EFFECTS OF N-ACETYL CYSTEINE ON TOBACCO CONSUMPTION IN BIPOLAR DISORDER AND SCHIZOPHRENIA

Marta Rapado-Castro, PhD.,

Seetal Dodd, PhD., Olivia Dean, PhD., Zhi Xiang On, BA Michael Berk M.D., PhD.

Melbourne Neuropsychiatry Centre

Disclosures

- Sara Borrell Health Research Fellowship, Institute of Health Carlos III, Health Research Found, Spanish Ministry of Economy and Competitiveness (Spain)
- Alicia Koplowitz Grant for Short-Term Placements, Alicia Koplowitz Foundation (Spain).
- **The bipolar disorder RCT:** Stanley Medical Research Institute and Mental Health Research Institute of Victoria.
 - Trial registration: Australian Clinical Trials Registry 12605000362695.
- The schizophrenia RCT: Stanley Medical Research Institute.
 - Trial registration: Australian Clinical Trials Registry, Protocol 12605000363684, www.actr.org.au.

Australian anti-tobacco marketing

25

THE CANADAGE MEASTRE

.AR

Prevalence

- WHO: tobacco kill **six million people/year**.
- Approx. 290 people die from smoking every week in Australia*
- About 32% of people with a mental illness smoke cigarettes*
 - 66.6% current (81% lifetime) for people with psychotic conditions^{**}.

*ABS National Health Surveys, 1989–90, 1995, 2001, 2004–05, and 2007–08. **Cooper et. al., 2012 Aust N Z J Psychiatry.

Prevalence

Smoking and mental illness

- Heavy users
- Increased nicotine dependence
- Reduced success in smoking cessation
- Associated with poorer outcomes of these disorders
 - Cardiovascular risk and respiratory disease
 - Increased rate of relapse and number of hospitalizations

Myles et. al., 2012 J Clin Psychiatry.

N-acetyl cysteine

- NAC stimulates the cysteine-glutamate exchange mechanism which
 - decreases nicotine self-administration
 - reinstatement of nicotine-seeking behaviour.

Gunduz-Bruce et al., 2012

Knackstedt et al., 2009; Kalivas et al., 2009;

NAC in Schizophrenia (N=140) Effect sizes

Berk et al., Biological Psychiatry 2008

NAC in Bipolar Disorder Effect sizes (MMRM, N=75)

Berk et al., Biological Psychiatry 2008

HYPOTHESIS

 NAC may exert beneficial effects on tobacco consumption in BP and SZ by restoring glutamate levels through the activation of the cysteineglutamate exchange system.

OBJECTIVE

 To examine the potential of NAC as a novel pharmacotherapeutic approach for tobacco consumption in schizophrenia and bipolar disorder.

METHODS

- A **subgroup analysis** of two RCT on smokers at baseline (SZ n=34; BD n=29)
 - NAC (2g/day): SZ=16; BD=12
 - Placebo: SZ=18; BD=17.
- The **CGI-SU** was used to measure **change on smoking** from baseline at week 8 and week 24 (end-up point).
- **GLM** were used to determine changes
 - NAC vs. Placebo (adjusted for treatment and site)
 - SZ vs. BP (adjusted for site).

Table 1. Comparison between NAC and Placebo treatment groups on clinical and sociodemographical variables at baseline (mean observed cases scores)

	NAC			Placebo			NAC vs. Placebo	
	SZ	BP		SZ	BP			
	N=24	N=15	Test ¹	N=20	N=19	Test ¹	SZ	BP
	Mean* (SD)	Mean* (SD)		Mean* (SD)	Mean* (SD)		Test ¹	
Age	37,5 (10.4)	39.9 (8.8)	t=-0.74 <i>p</i> =0.31	37.4 (12.4)	42.6 (13.8)	t=-1.24 <i>p</i> =0.81	t=-0.03 <i>p</i> =0.57	t=0.67 p=0.43
Sex (F/M)	5/19	10/5	χ²=8.19 p=0.004	4/16	14/5	χ²=11.29 p=0.001	(² =0.01 p=0.95	χ ² =0.10 p=0.66
Years of Illness	10.9 (8.7)	6.6 (5.1)	t=1.72 <i>p</i> =0.09	12.4 (9.8)	9.3 (10.1)	t=0.92 <i>p</i> =0.79	t=0.53 <i>p</i> =0.66	t=0.95 <i>p</i> =0.03
CGI_S	3.6 (0.7)	3.3 (1.4)	t=0.96 p=0.12	3.9 (0.8)	3.0 (1.1)	t=3.03 p=0.59	t=1.46 <i>p</i> =0.67	t=-0.64 <i>p</i> =0.53
GAF	51.9 (10.5)	61.1 (11.3)	t=-1.91 <i>p</i> =0.12	46.9 (11.0)	67.0 (12.6)	t=-5.31 <i>p</i> =0.69	t=-1.15 <i>p</i> =0.13	t=1.40 <i>p</i> =0.48
SOFAS	59.5 (13.6)	63.5 (13.9)	t=-0.88 <i>p</i> =0.977	51.1 (10.5)	66.6 (13.7)	t=-3.98 <i>p</i> =0.15	t=-2.24 <i>p</i> =0.11	t=0.65 <i>p</i> =0.82

¹ Paired t-test or Pearson's chi-square test (p<.05).

Table 2. Changes on symptom scores (mean observed cases scores)

	SZ NAC		SZ P	NAC vs. Placebo	
	Bs	Wk24	Bs	Wk24	
	Mean* (SD)	Mean* (SD)	Mean* <mark>(</mark> SD)	Mean* (SD)	Test
PANSS_P	15.3 (5.1)	12.1 (4.4)	14.4 (4.8)	13.7 (5.0)	F=2.26 <i>p</i> =0.12
PANSS_N	13.8 (4.5)	12.8 (3.6)	14.4 (4.8)	14.8 (5.4)	F=0.21 <i>p</i> =0.65
PANSS_G	32.8 (9.3)	27.3 (7.7)	31.9 (8.8)	30.6 (8.3)	F=6.80 <i>p</i> =0.01
PANSS_T	61.8 (14.7)	52.2 (13.0)	62.4 (15.4)	59.1 (15.8)	F=4.88 p=0.04
CGI-S	3.6 (0.7)	3.2 (1.0)	3.9 (0.8)	3.9 (1.1)	F=0.42 <i>p</i>=0.04
GAF	51.9 (16.5)	53.7 (14.7)	46.9 (11.0)	49.2 (12.3)	F=0.36 <i>p</i> =0.55
SOFAS	59.5 (13.6)	57.0 (12.7)	51.1 (10.5)	53.6 (13.0)	F=0.19 <i>p</i> =0.67

²One-way ANCOVA model with site as covariate (Change scores: end-up point minus baseline).

Table 3. Changes on symptom scores (mean observed cases scores)

	BP NAC		BP P	lacebo	NAC vs. Placebo	
-	Bs	Wk24	Bs	Wk24		
	Mean* (SD)	Mean* (SD)	Mean* (SD)	Mean* (SD)	Test	
MADRS	17.6 (12.2)	8.6 (7.8)	11.5 (8.8)	13.3 (13.4)	F=5.17 <i>p</i> =0.04	
YMRS	4.3 (5.1)	2.9 (4.4)	3.1 (3.1)	2.9 (3.1)	F=0.07 <i>p</i> =0.80	
CGI-S	3.3 (1.4)	2.5 (0.9)	3.0 (1.1)	3.1 (2.0)	F=1.21 <i>p</i> =0.29	
GAF	61.1 (11.3)	68.6 (17.1)	66.9 (12.6)	64.2 (17.0)	F=1.50 <i>p</i> =0.24	
SOFAS	63.5 (13.9)	71.6 (16.2)	66.6 (13.7)	66.2 (17.3)	F=1.87 <i>p</i> =0.19	

²One-way ANCOVA model with site as covariate (Change scores: end-up point minus baseline).

Table 4. Comparison between NAC and Placebo treatment groups on tobacco use (mean observed cases scores)

	NAC			Pla	cebo		NAC vs. Placebo	
	SZ	BP	Test ¹	SZ	BP	 Test¹	SZ	BP
	Mean* (SD)	Mean* (SD)		Mean* (SD)	Mean* (SD)		Test ²	
Week 8	2.25 (1.92)	3.92 (1.08)	F=6.03 p=0.02	3.00 (1.72)	3.12 (1.58)	F=0.42 <i>p</i> =0.52	F=0.69 p=0.42	F=0.87 p=0.36
Week 24	2.38 (1.86)	4.00 (1.41)	F=4.56 <i>p</i>=0.04	3.68 (1.00)	3.55 (1.92)	F=1.13 <i>p</i> =0.30	F=5.79 p=0.02	F=1.15 p=0.30

¹ GLM ANCOVA model with site and sex as covariate. ² GLM ANCOVA model with site, years of illness and treatment as covariate.

*The CGI-SU rates change from baseline in tobacco use on a 7-point Likert scale where 1 = do not use at all now, 2 = using much less, 3 = using slightly less, 4 = unchanged, 5 = using slightly more, 6 = using much more and 7 = using very much more.

CONCLUSIONS

- NAC may impact on tobacco consumption in schizophrenia.
- The potential of glutamatergic compounds such as NAC may constitute an important step forward on the development of novel therapies for nicotine addiction
 - with specific implication on major disorders such as schizophrenia.

Implications for therapy

FUTURE Number of Measuring cigarrettes per day nicotine levels **RCT NAC on** smokers

Special thanks to:

Prof. Michael Berk A/Prof. Seetal Dood Dr. Olivia Dean

Zhi Xiang On

Barwon Psychiatric Research Unit and Deakin University

NAC?

What about...

Hmm...

Acknowledgments

Special thanks to:

Prof. Christos Pantelis Prof. Patrick McGorry

MNC and OYHRC teams

Melbourne Neuropsychiatry Centre

THANK YOU FOR YOUR ATTENTION

Marta Rapado-Castro

marta.rapado@unimelb.edu.au